
PHYS4150 — P L A S M A P H Y S I C S

lecture 3 - plasma properties : debye shielding

Sascha Kempf∗

G135, University of Colorado, Boulder

Fall 2020

Plasma properties: Debye shielding

1 debye shielding

We now consider a negative test charge Q immersed in a homogeneous plasma. Q
will attract ions but repellants electrons. The displacement of electrons produces a
polarization charge, which shields the plasma from the test charge. The theory of
shielding has been developed first in 1923 by Peter Debye and Erich Hückel for
dielectric fluids.

To derive the shielding potential φ for the charge Q we assume a homogeneous
plasma with electrons of temperature Te and density ne and a fixed background of ions
of density n0. After the test charge has established equilibrium with the plasma its
potential is given by the Poisson equation

electrons: q =−e

∇
2φ(r) =− ρ

ε0
=− e

ε0
(n0−ne(r)) with φ(∞) = 0. (1)

In an electrostatic field the velocity distribution of the electrons is

fe(v) = n0

{
m

2πkBT

}3/2

exp

{
−

1
2 mv2 +qφ(r)

kBT

}
.

The knowledge of fe(v) allows us to find the local electron number density ne(r)

ne(r) =
∫
R

fe(v)dv = n0 exp
{

eφ(r)
kBT

}
,
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which we substitute into Eq. (1)

∇
2φ=− e

ε0
n0

(
1− exp

{
eφ
kBT

})
.

We expand the exponential term into a Taylor series to linearize the quation for φ

exp
{

eφ
kBT

}
= 1+

eφ
kBT

+
1
2

(
eφ
kBT

)2

+
1
3!

(
eφ
kBT

)3

+ · · ·

and keep only the first two terms

∇
2φ ≈ n0

ε0

e2φ

kBT
.

Because the plasma is isotropic we now want to make use of the spherical symmetry
of the problem. To this aim we express the Laplace operator in spherical coordinates

∇
2φ=

1
r2 ∂r

(
r2

∂rφ
)
+

1
r2 sinθ

∂θ (sinθ∂θφ)+
1

r2 sin2 θ
∂

2
φφ

and drop the symmetric angular terms

∇
2φ=

1
r2 ∂r

(
r2

∂rφ
)
=

n0

ε0

e2φ

kBT
.

This leads to an ordinary second order linear differential equation

1
r2 ∂r

(
r2

∂rφ
)
− n0

ε0

e2φ

kBT
= 0

1
r

∂
2
r (rφ)−

n0

ε0

e2φ

kBT
= 0

∂
2
r (rφ)−

n0

ε0

e2φ

kBT
(rφ) = y′′− n0

ε0

e2φ

kBT
y = 0 with y = (rφ) .

The solutions of y′′+a2y = 0 have the general form

y(x) =
c
x

exp(±ax) ,

from which follows that

φ(r) =
A
r

exp
(
− r
λD

)
with

λ2
D =

ε0kBTe

n0e2 (2)

being the Debye length. The value for the constant A can be found by using the fact
that at large distances φ(r) must asymptotically approach Coulomb’s law and we yield
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Figure 1: Comparison between the Debye-Hückel potential (orange) of a charge
immersed in a plasma and the Coulomb potential (blue) of a free charge.

the so-called Debye-Hückel potential

φ(r) =
Q

4πε0

1
r

exp
(
− r
λD

)
(3)

(Fig. 1). A useful relation for the Debye length is

λD = 7430m

√
T
eV

m−3

n
. (4)
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